《材料力学》实验教学大纲

适用范围: 2012本科人才培养方案

课程编号: 1401108030 **课程名称:** 材料力学

英文名称: Mechanics of Materials

课程类型: 必修

总学时/实验学时: 64/8

学 分:4

适用专业: 土木工程、道路桥梁与渡河工程

先修课程: 理论力学、大学物理

一、课程性质、目的和任务

本课程属于土木工程和道路桥梁与渡河工程专业平台课程必修课。要求学生在理论力学的基础上,通过材料力学的学习,对杆件的强度、刚度、稳定性问题具有明确的基本概念,必要的基础知识,比较熟练的计算能力,一定的分析能力和初步的实验能力。

二、实验教学基本要求

通过实验使学生学会使用常用电子仪器测量、调试数字电路逻辑功能的方法; 学会使用 各种集成数字电路元件, 使学生对基本数字电路具备初步分析、运用、设计的能力, 具有分析检查与排除故障、解决和处理实验结果的能力, 为后续课打下良好的基础。

三、实验项目与内容

大纲基本内容包括6个必做的实验,在规定的8个学时内完成。

序号	实验项目名称	内容提要	实验 学时	每组 人数	实验 类型	实验 类别	实验 要求
1	轴向拉伸实验	1. 测定低碳钢拉伸时的屈服极限、强度极限、延伸率、截面颈缩率; 2.测定铸铁拉伸的强度极限; 3.观察拉伸曲线图; 4.比较塑性材料与脆性材料拉伸时的力学性能; 5.学会操作万能试验机。	1	4-6	验证性	专业基础	必修
2	轴向压缩实验	1.测定低碳钢压缩时的屈服极限; 2.测定铸铁压缩时的强度极限; 3.比较塑性材料与脆性材料压缩时的力学性能; 4.练习使用万能试验机。	1	4-6	验证性	专业 基础	必修

3	圆轴扭转实验	1.测定低碳钢的剪切屈服极限和剪切强度极限; 2.测定铸铁的剪切强度极限; 3.观察、分析两种材料在扭转时的变形和破坏现象; 4.比较塑性材料与脆性材料扭转时的力学性能。	1	4-6	验证性	专业基础	必修
4	纯弯曲梁的正应 力实验	1.测量梁在纯弯曲时横截面上正应 力大小和分布规律; 2.验证纯弯曲梁的正应力计算公式; 3.测定泊松比; 4.将实际测量值与理论值进行比较; 5.通过实验深化对弯曲变形理论的 理解,培养思维能力。	2	2-4	验证性	专业基础	必修
5	材料弹性模量E和 泊松比μ的测试	1.测定常用金属材料的弹性模量E和 泊松比μ; 2.验证胡克(Hooke)定律; 3.学习掌握 电测法的基本原理和电阻应变仪的操 作; 4.熟悉测量电桥的应用; 5.掌握应变片在测量电桥中的各种 接线方法。	1	2-4	验证性	专业	必修
6	薄壁圆筒在弯扭 组合变形下主应 力测定	1.用电测法测定平面应力状态下主 应力的大小及方向,并与理论值进行 比较; 2.测定薄壁圆筒在弯扭组合变形 作用下的弯矩和扭矩。	2	2-4	综合性	专业基础	必修

四、考核方式

本实验课程成绩按照百分制计分,实验成绩按照20%计入《材料力学》课程总成绩。 实验成绩中实验考勤及操作占50%,实验报告占50%。

五、推荐教材和教学参考书

实验教材: 《材料力学指导书》(自编参考资料)。

参考书:《材料力学》(第五版),孙训方主编,高等教育出版社,2009。

制订人: 张扬 审订人: 赵 冰 批准人: 杨庆年

2012年7月30日